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Abstract 
We present a learning-based method for model completion and adaptation, which is based on the combination 
of two approaches: 1) R2D2C, a technique for mechanically transforming system requirements via provably 
equivalent models to running code, and 2) automata learning-based model extrapolation. The intended 
impact of this new combination is to make model completion and adaptation accessible to experts of the 
field, like biologists or engineers. The principle is briefly illustrated by generating models of biological 
procedures concerning gene activities in the production of proteins, although the main application is going 
to concern autonomic systems for space exploration. 

1 Motivation 

A formal approach to Requirements-Based Programming, provisionally named R2D2C (“Requirements to 
Design to Code”), was developed at NASA [14] as a general-purpose method to mechanically transform 
system requirements into a provably equivalent model. This is a central need for ultra-high dependability 
systems like those developed at  NASA for space exploration. The R2D2C approach provides mathematically 
tractable round-trip engineering for system development, rigorously based on formal modelling and formal 
reasoning techniques. In this paper we complement this method with a learning-based method for model 
completion and adaptation in order to make model completion and adaptation accessible to experts of the 
field, like biologists or engineers. 

Before discussing the technical background and the biological application, we briefly sketch the standard 
areas of application. 

Application Areas 

The work described below is motivated by the need for requirements-based programming for ultra-high 
dependability systems which are remote, embedded, and increasingly autonomic. 

Sensor Networks An example of a sensor network for solar system exploration is the Autonomous Nan0 
Technology Swarm mission (ANTS) 181, which is at the concept development phase. This mission will send 
1,000 pico-class (approximately 1 kg) spacecraft to explore the asteroid belt. The ANTS spacecraft will act 
as a sensor network making observations of asteroids and analyzing their composition. Embedded sensors 
in space applications are a challenge along several research dimensions: large signal propagation delays 
in communications with Earth; unavailable or blocked communications paths between the spacecraft and 



Figure 1: The enhanced R2D2C Approach with Requirement Completion 

mission control on Earth for variable (perhaps long) intervals of time; and operations under extremes of 
dynamic environmental conditions. 

Due to the complexity of these systems as well as their distributed and parallel nature, they will have an 
extremely large state space and will be impossible to test completely using traditional testing techniques. 
R2D2C helps by converting the scenarios into a formal model that can be analyzed for concurrency-related 
errors, consistency and completeness, as well as domain-specific errors. 

Robotic Operations We have been experimenting with generating code to control robots, but more inter- 
esting is the use of this approach to investigate the validity and correctness of procedures for complex robotic 
assembly or repair tasks in space, which rely heavily on the support of embedded controllers. Exploratory 
work here concerns providing an additional means to validate procedures from the Hubble Robotic Servicing 
Mission (HRSM) - for example, the procedures for replacement of cameras on the Hubble Space Telescope 
(HST) . 

Communication Systems The learning based approaches have fared quite promisingly for the test-based 
discovery of models of legacy communication systems, thus outperforming prior approaches based on trace 
combination [ll]. As shown in [16, 211, the test-based model generation by classical automata learning is 
very expensive. It requires an impractically large number of queries to the system, each of which must be 
implemented as a system-level test case. Key towards the tractability of observation based model generation 
are powerful optimizations exploiting different kinds of expert knowledge in order to drastically reduce 
the number of required queries, and thus the testing effort. %cent studies have brought to a thorough 
experimental analysis of the second-order effects between such optimizations in order to maximize their 
combined impact [21], and to the development of a mature toolset for experimentation [26], which is used 
here. As shown in [2], our learning method is coherent with the usual notions of conformance testing. 

In the specific R2D2C context, we are interested in investigating the possible application of the combined 
approach to the specification of communication mechanisms described in the previous application domains. 
This can be completed by a test-based or monitoring-based validation once those systems are operational. 



In the following, we sketch the principles on which the R2D2C approach works and the effects of the 
learning-enhanced method. 

2 How R2D2C Works 

The R2D2C approach involves a number of phases, which are reflected in the system architecture described 
in Figure 1 and described below. 

D1 Scenarios Capture: Engineers, end users, and others write scenarios describing intended system opera- 
tion. The input scenarios may be represented in a constrained natural language using a syntax-directed 
editor, or may be represented in other textual or graphical forms. 

D2 Traces Generation: Traces and sequences of atomic events are derived from the scenarios defined in D1. 

D3 Model Inference: A formal model, or formal specification, expressed in CSP is inferred by an automatic 
theorem prover - in this case, ACL2 [17] - using the traces derived in phase 2. A deep1 embedding of 
the laws of concurrency [13] in the theorem prover gives it sufficient knowledge of concurrency and of 
CSP to perform the inference. The embedding will be the topic of a future paper. 

D4 Analysis: Based on the formal model, various analyses can be performed, using currently available 
commercial or public domain tools, and specialized tools that are planned for development. Because 
of the nature of CSP, the model may be analyzed at different levels of abstraction using a variety of 
possible implementation environments. This will be the subject of a future paper. 

D5 Code Generation: The techniques of automatic code generation from a suitable model are reasonably 
well understood. The present modeling approach is suitable for the application of existing code gener- 
ation techniques, whether using a tool specifically developed for the purpose, or existing tools such as 
FDR [lo], or converting to other notations suitable for code generation (e.g., converting CSP to B [4] 
and then using the code generating capabilities of the B Toolkit). 

According to this full cycle, developing a system that will have a high level of reliability requires the 
developer to represent the system as a formal model that can be proven to be correct. Through the use of 
currently available tools, the model can then be automatically transformed into code with minimal or no 
human intervention to reduce the chance of inadvertent insertion of errors by developers. Automatically 
producing the formal model from customer requirements would further reduce the chance of human error 
insertion. 

In this paper we focus on a specific, new aspect of the R2D2C approach, the completion of the re- 
quirements given as a set of traces as generated by D2. This needs a short introduction into automata 
learning. 

3 Automata Learning 

Machine learning deals in general with the problem how to automatically generate a system’s description. 
Besides the synthesis of static soft- and hardware properties, in particular invariants [9], [24], [3], the field 
of automata learning is of particular interest for soft- and hardware engineering [7], [23], [32], [25], [6]. 

Automata learning tries to construct a deterministic finite automaton (see below) that matches the 
behavior of a given target automaton on the basis of observations of the target automaton and perhaps 
some further information on its internal structure. [ll, 31, 221 explain our view on the use of learning. Here 
we only summarize the basic aspects of our realization, which is based on Angluin’s learning algorithm L* 
from [I]. 

L*, also referred to as an active learning algorithm, learns a finite automaton by actively posing mem- 
bership queries and equivalence queries to that automaton in order to extract behavioral information, and 
refining successively an own hypothesis automaton based on the answers. A membership query tests whether 
a string (a potential run) is contained in the target automaton’s language (its set of runs), and an equivalence 

“‘Deep” in the sense that the embedding is semantic rather than merely syntactic. 



query compares the hypothesis automaton with the target automaton for language equivalence, in order to 
determine whether the learning procedure was (already) successfully completed and the experimentation can 
be terminated. 

3.1 

Specifications in terms of individual traces are by their nature very partial and represent only the most 
prominent situations. This partiality is one of the major problems in requirement engineering. It often 
causes errors in the system design that are difficult to fix. Thus techniques for systematically completing 
and later on adapting such partial requirement specifications in cooperation with the application expert are 
of major practical importance. 

We therefore propose a method for requirements completion and adaptation, which is based on automatic 
(active) automata learning. In essence, the method works by 

0 initializing the learning algorithm with the set of traces constituting the requirement specification and 

Learning-Based Model Completion and Adaptation 

with the model needing adaptation (this model may well be empty), and 

constructing a consistent behavioral model by establishing predefined consistency and well-foundedness 
conditions. The details of how to do this have been explained in [31] its practical handling in [16, 211, 
and a library-based toolset for experimentation in [26]. 

In this fashion, we arrive at a finite state behavioral model, which is an extrapolation of the given requirement 
specification: it comprises all ’positive’ traces of the specification, and rejects all forbidden traces. All the 
other potential traces are consider as ’don’t cares’, in order to construct a corresponding state minimal 
hypothesis automaton. In particular, although the learning procedure by its nature will only investigate 
finitely many traces, the constructed hypothesis automaton will typically accept infinitely many traces, as 
the extrapolation process introduces loops. 

In order for this method to work, a number of membership queries need to be answered. Both, establishing 
closure of the model, as well as establishing the consistency of the abstraction of reaching words into states 
(i.e., of the characterization from above introduced in the previous section) can only be effected on the basis 
of additional information about the intended/unknown system. 

3.2 Requirement Completion in R2D2C 

Fig. 1 shows the R2D2C scenario including the new requirement completion components. As indicated by 
the arrows representing the potential flow of R2D2C processes, our new components introduce the following 
new options, which complement the original R2D2C process here indicated by the arrow bypassing the 
requirements completion module L2: 

0 Most powerful is the integrated mode of use, where the requirement completion component L2 is 
added to the original process. Its role is here simply to support the evaluation of the given set of 
requirement traces, and to hint at underspecified portions which may be successively completed. This 
option strengthens the original R2D2C process. 

0 Alternatively, one may replace the model inference component D3 by our requirements completion 
component L2, meaning that the subsequent component D4 and D5 directly work on the model pro- 
duced by L2. Currently, this means that we restrict ourselves to sequential models. However, we are 
investigating how to overcome this restriction in the future. 

The next section presents a non-standard application of our technology to the description of biological 
processes. 

4 Application: Generating and Verifying Complex Biological Scripts and Pro- 
cedures 

Finding patterns in biological sequences has the goal of identifying parts that have a biological meaning 
[18, 19, 201. There are several approaches to this problem. Bioperl [29] provides a collection of perl modules 
used for the development of perl scripts for use in Bioinformatics applications. 



The Bioperl [12, 301 Project is an international association of developers of open source Perl tools for 
bioinformatics, genomics and life science research, with strongly increasing relevance over the almost 10 
years. Bioperl relies on a large number of scripts to access, steer, and orchestrate a growing number of 
bioinformatic tools and databases. These scripts are becoming increasingly complex and intertwined, so 
that their correctness has become a legitimate concern of the community. 

The application of software validation techniques to Bioperl is attempting to provide an ongoing, system- 
atic testing of the Bioperl basis, with patches and validated new code being added to the public codebase. 
The goal is to establish user confidence that software components will work as described. R2D2C is a 
comprehensive software validation method that has been already successfully applied to problems in this 
domain. 

We consider here again the application example already handled with R2D2C in [27] and solve the model 
creation problem with the combined methodology, using the requirement completion in replace mode. 

4.1 From Scenarios to CSP 

Let us consider again the same example from 151 (pp. 146-147). The problem is described in the form of a 
scenario: 

0 Gene Geneone produces protein Proteinone in t l  units of time; Proteinone dissipates in time u l  and 
triggers condition cone. 

0 Gene GeneTwo produces protein ProteinTwo in t2 units of time; ProteinTwo dissipates in time u2 and 
triggers condition ctwo. 

0 Once produced, ProteinTwo positions itself in GeneOne for u2 units of time preventing Proteinone 
from being produced. 

The scenario represents a process that is expressed and implemented in Bioperl using a Perl script. 
However, it is also possible to express this scenario using a formal model based on CSP [15]. GeneOne, 
Proteinone, GeneTwo, ProteinTwo can be considered as separate processes with timing constraints implicitly 
included. (Timing constraints may be explicitly handled by using Timed CSP, a variant of CSP which extends 
the semantics of CSP with time [28].) The implicit pre-condition that GeneOne must be enabled is handled 
by the Start process. The events and conditions describing protein production are represented as messages 
gone, cone, gtwo, ctwo, and enabled. The resulting R2D2C input scenario is (Dl): 

S t a r t  sends enabled. 
GeneOne receives enabled then sends gone. 
Proteinone receives gone then sends cone. 
GeneTwo sends gtwo. 
ProteinTwo receives gtwo then sends ctwo. 
GeneOne receives ctwo then sends enabled. 

and the corresponding system description in CSP (after Phase D2): 

channel cone, ctwo, enabled, gone, gtwo : T ; 
S t a r t  = enabled ! 0 -> S t a r t  ; 
GeneOne = enabled ? x -> gone ! 0 -> GeneOne ; 
Proteinone = gone ? x -> cone ! 0 -> Proteinone ; 
GeneTwo = gtwo ! 0 -> GeneTwo ; 
ProteinTwo = gtwo ? x -> ctwo ! 0 -> ProteinTwo ; 
GeneOne = ctwo ? x -> enabled ! 0 -> GeneOne ; 
System = 

GeneOne [I CI I3 I1 
GeneTwo [ I  CI I3 I1 
Proteinone [ I  € 1  I3 I1 
ProteinTwo [ I  (I I) 11 
start ; 
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Figure 2: Learned models of the single actors 

4.2 

Instead of analyzing the CSP model, as in [27], we have here used our learning technique to fully automatically 
produce automata models for each system component (see Fig. 2), as well as for the model of the whole 
system (Fig. 3). 

Learning and Adapting the Models 

Figure 3: Learned model of the biological system 



Figure 4: Stepwise learned model of the incorrect biological system 

These graphs show in a very intuitive way the global behaviour of the system. It is thus very direct also 
for someone unfamiliar with CSP and its tools to validate the behaviour by inspection. 

A frequent mistake in implementing these requirements is in fact the omission of constraints, either due 
to their implicit presence in the requirements, or due to errors in code development. For example, omitting 
Start sends enabled (which makes explicit an implicit precedence) nothing prevents GeneOne from constantly 
generating Proteinone and ignoring ProteinTwo inhibition. The corresponding erroneous system of [27] has 
also been learnt with our method, resulting in the global behaviour of Fig. 4(4). 

This inspection could then be used to revise the requirements before developing the Bioperl code, even 
before carrying out a formal analysis at D4. 

4.3 Successive Refinement 

The erroneous system could be learned in only four iterations. Fig. 4 illustrates the concrete learning process 
starting from the initial hypothesis along the application of the algorithm. 

To learn this model from scratch we initialize the learning algorithm with no information about the 
system except for the alphabet of symbols. No initial trace is provided, no hints on possible symmetries or 
independent actions. 

1. After processing the queries of length 0 and 1 with these outcomes 

0 acc 
gone acc 
gtwo acc 
ctwo nonacc 
cone nonacc 

the learning algorithm generates the hypothesis model depicted in Figure 4(1): there is at least one 
state, which accepts gone and gtwo and rejects cone and ctwo. In the picture we show only the 
accepting traces: the automata are incomplete in the sense that all the absent symbols lead to a single 
nonaccepting state. 

2. By model checking an expert-given corresponding property we find out that gone.gone is not an ac- 
cepting sequence, thus the model (1) is not yet accurate and must be refined. We refine it starting 
from this counterexample, and reach a new hypothesis shown in Fig. 4(2). Here, the counterexample 
sequence leads to the discovery of a second state, state 1, and we have distinguished further behaviours. 



3. Due to expert knowledge, we find out that gtwo.gtwo is another trace that must be rejected. This leads 
to the further refinement of state 1 and by completion we reach a new hypothesis as in Fig. 4(3). 

4. After also rejecting gone.gtwo.ctwo.gone in a similar fashion, we arrive at the automaton shown in 
Fig. 4(4), which satisfies all our expectations. 

In order for this method to scale, and to limit the required expert-interaction, we provide a number of 
optimizations that exploit other sources of expert knowledge, like prefix closure of the language, symmetry 
between certain components (genes always behave like genes), and the independence of certain observations. 

5 Conclusions and Perspectives 

We have presented a learning-baed method for model completion and adaptation, which is based on the 
combination of two approaches: 1) R2D2C, a technique for mechanically transforming system requirements 
via provably equivalent models to running code, and 2) automata learning-based model extrapolation. The 
intended impact of this new combination is to make model completion and adaptation accessible to experts 
of the field, like biologists or engineers. 

Currently, we are investigating the power of our method. Until now, we used it for an initial model 
completion, as a support for the creation of the first model. We are currently carrying out case studies that 
concern model evolution and change, in this case continuously updating the model of biological processes 
according to new information. 

We are also building and adapting models of servicing procedures for spacecrafts, and adaptive control 
procedures for remote autonomic systems. These are the application areas that in our opinion are going to 
profit enormously of the combined completion-adaptation technique. 
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